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INFINITESIME., CONICAL SUFERSONIC FLOW#
By Adolf Busemann

Conical flow flelds.- Real flows always occur 1ln
three~dimensional space. In calonlating a flow, however,
one wlll greatly appreclate 1t 1f there are only two
essentlial coordinates to deal wilth, Flows of this kind,
limited to two coordinates, formm the plane flow and the
flow of axial symmetry. Thea apace which 1ls fllled out
by the streamlines ls represented in planes parallel to
these lines; they contaln certain streamlines to thelr
whole extent. In conicel flow fields, however, the
streamlines are cut through slamtingly so that each
streamline 1s contalnsd in the plane but appears there
as & point only. These relatlouns are made clear in flg-
ure 1. If the frictlon 183 negleoted the shape of the
body leads one to expect a pattern that can be increased
or decreased geomstrlcally. The fixed point P and the
direction of the three spaetial axes, X, ¥y, and % remaln
the same., All essentlal characteristics of the flow and
the share of the body can be inferred from the plane
zZ =1. Apluwo z = 2 wvould, il' lictiices wero doyblod,.
show 1ldentlcal values Tor gas conditions and velocltles.
The lsobar planes in the spuce x, y, 2 &are of conical
shape and have the cone vertex P3; thersefore these flows
shall be called abbreviatedly conlcal flow flelds.

Infinitesimal differences 1in pressure.~ In figure 1

there shall be one more limltation for the general conical
flow field, namely that the body disturbs the parallel
flow only fo a sl ght degree. So the conlcal lsobars
reflect over- and under-pressures differing infinitesl-
mally from the pressure of the parallel flow, This two-
Told limitation, to conical and infinitesimal, is not
actually verg s%ringent Insofar as in the class of poten-
tlal flows there are present onl¥ the conlcal flelds of
axial symmetry and the Infinltesimal conical flelds. All
other conical flows are affected by rotation. The infini-
tesimal supersonic flows, however, &also excel in another
way: the superposlition of filelds with different fixed
olnts P 1is permitted in splte of the fact that the {ifw-
erentlal equations ordinarily are not linear; thus the
applicability 1s broadened most gratifyingly.

#'Tnfinitesimaloe kogelige Uberschallstrimung."
Deutachen Akademie der Luftfahrtforshung, 19h2-hg, P. 1155.
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Differentlal equatlon.-~ There are two ways to limit
the dIITerentIal equation for the potential in conical
flelds to small additlonal velocities u, v, w, and to
limit the differentlal squatlon for nearly pareallel
spetial flows to conlcal fields; the first is the his~
torical one, the second, however, the simpler one.
Therefore here the second one ls chosen. As is well
knovn, the linearized differential equatlion in the
space x, y, z, for the additional poténrntlal @ over a
basic velocity W 1in the direction off the axis 2z reads
1f the gas kas the sonic velocity a:

.3 '
Pux + Pyy + Pgz (1"1:'2')=0 (1)

The coordinates & and 1 of the conical current cor-
respond to the spatial coordinates” x and ¥ 1in the
plane 2z = 1:

g = §. and 1 = g. (2)

The additional potential @ increases on each ray through
ths fixed point P 1in pronortion to the distance. There-
fore, the potential divided by z 1s invariant on a
single ray, and »rovides tiie potentlal of the conical

flow:
1 - — 7}
A %(g’n) = EQJ(X,y,Z)__b M (5)

The additional velocltles u, v, w arc the derivatives
of the formor notcatial, ) '

o
il

o=ty vE o =X,

(pqz=7'.(,'-§-k§—-noxn

(L)

w

The differential equation for the new potential V¥, is
deteimined from the old diflerentlial equation, and one
obtainss: .
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oty (- ié) +f/.mi..<1 - g%)-x&%: o) .

. > (5)
wr P
with JK-= 15_1=;_1_
a® | tg o b

Veh "
)

It certalnly is gratifying to recognize in the type of
thls differential cquation an old acquaintance Ifrom the
plane gas flow: for thostroam function of the plane flow
transformed according to Legendrs end superimposed over
the components of the current density produces exactly
the ssame differontial equation. In ordinary geses, how-
ever, tlic denominabor A? is a local function; but there
1s a special gas with rocitilincecar aaisbatics in the
pressuras-volume-dlagram in whilch, as required, this
denominator Aalso rexnains cosasvant. This gas is a special
favorite where 1t is a mere cuestion of numerical
calculatlions.

Regions of inTluonce.- The spatial diflerentlal
equation of the @as flow at supersonic veloclity isc of
hyperbolic charscter, as shown in cquation (1). That
means: each point of tl:e flow dominates a conlcal range
openln~ downstregn; eacl. locus, on the other hand, is
dominatod sclely by those »oints vwhich are situated in
the cone prolonged baclniard and opening upstream. FEere-
with the rolationships are cdlvided definltely among the
three vossibilitlsess:superlor, subordlaate, and independent.
Machts cones in the supersonic flow consldered es regions
of disvurbance of a small trial body make this fully cou-
nrehensible in & piyysical sense. It must seem odd at
flrst that the denendencles of the genersal spatial flow
arc widened as soon as one procoesds to a more limited
spatlal flow, But the above-nentioned differentlisal equa-
tion shows thot inside of the cilrcle with the radlus A

here wnrevalls the elliptic chsaracter.

This behavior 1s easlly explained by the fact that
all pointe of & ray starting from P are comprehended
as & whole. The relation of dependerciss of two rays
results from the dependencies of the single points. Only
the charsacteristic "lndependent" appears uniformly in
certaln cases for all pairs of points (P 1itself is
excluded). The combination superior and independent
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becomes superior; subordinate and independent become
subordinate. But 1f there are palrs of polnts of all
kinds on the rays, then the rays are subjJect to the new
characteristic "reciprocally dependent." Rays of this
kind £ill out the interior of Mach!s cone starting from
point P.

Characteristlcs.~ Machts cone starting from P
Intersects the plane 2z = 1 on the circle having the
radius A. In the fleld outsilde of this cone, i. e.,
outside of the circle 1n the intersecting plane, one
gets rectilinear characteristics of the differential
equation (5) which are tangents of the circle. In fig-
ure 2 this 1s demonstrated by two wires, a and b,

The wire b 1s bent slightly upstream in order not to
exclude cases of this kind. The range of disturbance
results from the sum of all of Mach's ccunes stvarting from
all points of the wire. It is immediately obvious that
only the circle with the radius A and its tangents can
form the boundaries of the area of disturbance. OQOutside
of llach'!s cone starting from point P tiese character-
1stics settle all questions; they can be traced back to
the plane case with & transverse couponent of the velecity.
The egsential and different part of the conlical flelds,
thercfore, 1s concerned with the convex surface of Machts
cone starting from point P, and with 1ts Interior.

Tschapligints illustration.- In the plane of inter-
section 2z = 1 we rind Insice of the circie wilith the
radius A the elliptic charactor of the differential
equation (5). Neuar the center the differontisl equation
of the-potential theory is valid; 1n plane cases, this
equation cen be sctisfied by analytic functions of the
complex variable.- In this circle, therefore, there only
exists & mutual dependence but not yet a full equlivalence
of all locl. This is not surprising, becauss the analytic
continuation of the plane reaches to the outer range of
the circle. Tsachapliglin, however, lhas devlissd a geomet-
rical construction whiciy so distcrts the field inside the
circle taat equivalence regarding the differentiael ‘equa-
tion will result. As Tfigure % shows thils distortion 1s
attained by trancferring the plane z = 1, with the
comnlex variable = & + in, through parallel projec-
tion to a sphsrec with ths radins 4, and by then pro-
Jeetlng it from a pole of ths sphere on to & plane in
the distance., One wlil easily recognize that only the
interior of the circle with the radius A wlll be.




NACA T¥ Ho, 1100 5

deplcted; first 1t wlll be delineated from tiie lower
- half-sphere on the. interlor of the unit circle of the
new plane with the new complex variable --€; a second
time 1t will go from the upper half-sphere on to the
outer fleld of the unlt circle. In these coordinates
one can use analytic functions -for the solutlons.

SOLUTION OF THE DIFFERENTIAL EQUATION

For each of the velocity components u, v, and w
one can equate the real part of an analytlc function f(e).
It will serve the purpose best to set up the equation
for the component w, because then the more closely
related components u and v can be calculated Jointly:

W=Ae«Re (f(e¢)) or wo+1ils = A+« (€) (6)

The completion represented here by s 1is for the time
belng completely meaningless. According to Tschapligin
there then results the complex velocity:

W=1u+iv =~ %—Jr(g_f-— + E(lf) (7)

The pressure 1n the current, with the aid of the den-~
sity ¢, results from the velocity componbnts as follows:

3+ 3+8
p=-pEiJ-w+u v2 o+ w

2
1 (8)
% -5o[aw (£ + F) + b

The right function f(e¢) 13 to be selected with the aid
of the btoundary concitions. .

Boundery condltions.~ The outside of Mach'!s cone ls
superior to Machis cone 1tself. Therefore, first, those
veloclties u, v, and w on the circle of the {-plane
(2nd ther»efors on the uniform circle of the e-~plane)
that result from the ouver {fleld must be ascertalned.
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If the body does not protrude anywhere out of Mach!ts
cone, the values u=v =w =0 on the uniform circle
are glven. If on the contrary no part of the.body 1s
inside of Mach!s cone, the velues of w are to be
represented by an anelytic function 1(€) free of
singularlties wilth the glven boundary values oa the
circle., If f£(€) does not produce a statlonary value
df = 0, then u and v according to equation (7) will
have a logarithmle singularity at zero. The many-leaved
function can be selected 1ln a unlque way by using radial
intersectlions with the boundary values of u and v on
the uniform circle. The radlal intersectlons produce
rotatlonal layers, as 1s physlcally to be expected from
& 1ifting surface.

Impermeable boundariss of the body can be trans-
Tferred into the e€=~niane at the same time. They must be
streamllines In the field of the relative velocilty:

Q W + €0 . 24¥e (9)

rel ©

Thils condition is not always sasy to comply with. How-
ever, 1f the body possesses roctllinear surface elements
passing near zero, the otherwise meaningless imaglnary
part s of the funciion f£(€) will remaln constant on
these elements. I the straisght part goes ovar zero, a
staticnary value for f 1s to te stipulated at zero,
Conditions of this kind arc especially agreeable. From
the pressure equation (8) conditions applicable to cases
of given pressures or of glven 1ifts are to be understood.

The dlsappcarance of the real or of the imaglnary
part of f on cortalin lines because of symmetry can be
attalned in the woll known way by reflexion, as the
examples will show.

Examples
1, The clrculer cone in the straight flow
For the only axfel-svmmetrical cese, 1. e., the

circular ccne with an iInfinitesimsl apex angle, the
risat solntlon 1s, of course, given LY the stateuent

w + 13 = C ¢ jne
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The pressure on the convex surface of the cone results

“in 'the known way (fig. 1) and conforms with v, Karmants

values &end mine.
2. The circular cone 1in bblique flow

One succeeds, wlth the &ld of the relative veloclty
according to equation (9), in solving the clrcular cone
in oblique flow, Hereln the apex angle and the angle of
attack may, though Infinitesimal, yet bear a relation to
each other. The solution 1ls sihown in flgure 5. If one
mekes the angle of obliqulty ¢ zero, one gets agaln the
clrcular cone 1in stralght flow. If one makes the apex
angle 2p disappear, one gets the pressure dlstribution.
of a circular cone 1n an lncompressible current. The
comparison with Ferrarl 18 rendered somewhat difficult
by the fact that Ferrarl messures the veloclty fileld per-
pendicular to the cone axis while 1t is here perpendicular
to the wl.d divection. If the system of coordinates 1s
rotatoca sdequately, the conformity 1s complete.

3. Tip of a rectangular plate

If a plana recchtansular plate of infiniteslimel thick-
ness is placed inn a flow ncrpendicular to tke front edge
with an 1afinitesimal angle of ebtack, and if the velocity
fleld is needed only up to the rear eodge of the plate,
one can place the flxed noint P at the right corner
polnt of tlie front edse. On the suprosition of an
infiniteslinal angle of attack (with the =x-axis
forming the axls of rotation) tﬁe pressurs dlstribution
willl be represented on the quarter plane between the
posltive axls (z) and the negative axis (x). For the .
plane 2z = 1 tho section of the body, except for infinl-
tesimal distances, 1ls then rendered by the negatlve real
eaxls, Let the reduced pressure gbove the plate and the
Increased pressure below the plate be adjusted to a unilt
value outslde of Mach!s cone. Thesae values hold on the
boundery circle. On the left half of the unit clrcle of
the €=~pléne corresponding values for w are then to be
assigned. On the right semiclrcle the outer field 1s
undisturbed; here w = 0. For ressouns of symmetry the
velue w = 0 must also result on the poaitive, real axils,
Mong the negatlve resl axis, on the contrary,

8 = Im(f(e)) must be fixea because of the fixed radial
toundary. Since 3 1is given only up to one coustant,
cne can dsmeénd hers s = 0. All conditlons can be
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attained by reflexlon 1f one undertekes a preliminary
conformal mapping on the plane v = /e,

The solution 1is rcpresonted in figure 7. Figure 8
shows the pressure dlstribition on both edzes of a rec-

tangular plate.
;. Supporting triangle

Every two radll starting from P form a triangular
plane as far as the plane 2z = 1, when all polnts are
connected. Because of the required 1ufinlitesimal dis-
turbance of the parallel current, however, the angle of
attack must be infinitesimal, so that the plane of the
two rays will nearly pass through the z-axis., Such
triangles are possible comnletely inslde of llach's cone,
completely outslide, ana unl- and bi-laterally »rotruding.
Hers we shall only consider the simplest case oIl the
supporting trlancle outside of Ilacniz cone, although all
otiwer cases can be easily intesreted,

Figure 9 sliows thils suuporting triengle. The
veloclty componcnt w whilcl. predcominantly inrluences
the pressiure 1ls difrerent frow zero orly on the short
arcs betweer § and {; as also £, and lz. The
value zero results irom the undisturbed state on the
right, &nd also on the delt bacause of the prassure
sd justment behind the triangle, vwhen conslderation 1s
given to the syumetry with a »nosltive and with & nega-
tive anglc of attack. Iigure 10 sliows the relations in
the ({-piane. Il owne Intends to let the rear edge of
the triangle travel whlle the front edge lles flxed, ons
will at first tr:nsfer only tho polnts {, and ¢, into
the e¢-~plane., Vith sultable regulation tkere must result
an increase of w from O to +w at {,, and from
-m to 0O at f5 (ir one moves on the circle in the
diraction of increasing angles). One can treat this
part of the solutlon independsntly l1i' one &sssumes &
further singularity at zero. Physlcally spesaiting, one
tiren has & uwniformly loaded triangle between che front
edze ab §K1 and the z~axls, Inslde of llach's conc,
Fowever, © is triangle is not flst, but is twisted to
rniform or load.: A3 zoon ag one supoerimposcs atb
the rear edge a negavively loaded triangle and its influ-
encc betwcen gua anéd the z-axis, the part behind the
roar edze wlll no longer b~ supporting, end the singu-
larily In w &t the polnw zero of the €~plane disapears.
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However, a vortex layer 1ln the fleld wu, v 1ls left.
The partlal solution in ths €-plane 1is represented in
figure 1ll. e : .

5. Superposition of two conical flows

The infiniteslmal conlical flows can be superposod .
without having the fixed point in common as in figure L.
Therefore the relatlons 1n the plane plate can also be
represented when the plate has more depth. Flgure 12
shows the l1sobars of the edge of the plate and also thelr
superposition after Mach's cones have overlapped. Dif-
ferent boundary conditions for the partial solutions
~ need be considered only when the cones roach the other
odge of the plate. The dlsepocarance of pressure along
& stralght line in Just the dlstanco &t which tlie cones
arrive at the other eodge of the plate is remarkable.

The positively loadcd part of the plate ends here. Filg-
urs 15 shows the 1ift dlstrlbution of the positively
loaded part 1n porspective reprcsentation.

To find the volocity field behind a rectangular
plate cf flnite depth oue cain anmul the supporting pres-
surs difrerences of & plate of Infinite depth by conical
fields having the aplces on the recar edge of the plate.
If one suporposes & negatively loaded »late shifted
infinitoaimally in the direction of the z-axis one
obtairs a supporting llne as a llnitlng casc of the
supporting strip. The cases calculatad by 3Schlichting
according to Prandtlts mcthod are obtained in this way.
Here, too, the conformlty is perfoct, except for an
error ol sign in the calculatlion of the integral equatlon.

SUMMARY

The calculation of infinitesimal conlcal supersonic
flows has been applled first to the simplest axamples
that havo also been calculated in another way. Except
for the discovery of a miscealculation 1n an older report
there was found the expected conforumity. The new method
of calculation 1s limited nore definitely to tho conlcal
case; bukt, as a compensatlon, 1t is much more -convenlent
pecause the solution 1s obtained hy &nalytiec functlons,
The fundamental recognition that there the hyperbollc
character is roplaced by the elliptic ono will lead to
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more thorough investigation of conical fields as special
cases in supersonic flows. Of course, ocne will be
tempted to call the elliptic character seemingly clliptic
only; for if one notches an indentation into a cone, the
real hyperbelic character of the field of the flow down-
stream from this indentetion immediately becomcs obvious
again. However, 1if one traces the flow to a polint very
far behind the iundentation there will appear inside of
Machts cone a rociprocal relation between cvery two rays
which will gradually restorc the conical course of the
flow, Instcad of tf’"hu to producc the inal flow by an
infinitc succession of hyo‘r“nlfn denendencles it will
be more expedient to comsider spscial ¢lliptic singu-
larities at ths peints of disturbance. In thoese rela-
tions I sec the signiiicaacce of the conical ficld: the
infinitesimal casc ropressuts oniy a first approximation
to 1t.

Translation by Mary L. lahler
and Robert T. Joiws,

National Advisory Committoe
Tfor Acrcnautics.
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Figure 1. Coordinates in conical field’
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Figure 3. Chaplygin's transformation
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Figure 4. Circular cone in axial flow.
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Figs. 5,6
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Figure 5. Circular cone in yawed flow
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v = JE~

flv) =—i{ln(v-v_1) ~inl(v-v,)

-ln(v—y3)+ Ln(v—v#)}

%

s
\E

Figure 7. Conformal representation at edge of a
rectangular plate

Direction of motion of
plate

Figure 8. Pressure distribution on a flat plate

Figure 9. The
lifting triangle.
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Figure 10. Cross section of the lifting triangle

fle) = i'{Ln(e-el)+ln(e—62)—lne}

pd-ps = const.

L2

Figure 11. Representation of the lifting triangle
in the € plane
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Figure 1l2. Superposition of edge influences for
the rectangular plate at supersonic velocities

~

LIFT -

Figure 13. Pressure distribution on the rectangular
plate at supersonic velocities
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